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ABSTRACT: Polytheonamide B (1) is an ion-channel forming natural peptide with a D,L-
alternating 48 amino acid sequence, which is an exceedingly potent cytotoxin. We recently
designed and synthesized a simplified dansylated polytheonamide mimic 2, in which six amino
acid residues were modified from 1, and demonstrated that 2 emulated the functions of 1. Here
we report a comprehensive structure−activity relationship study of substructures of 2. A unified
synthetic strategy was developed for highly automated syntheses of 13 peptide sequences of 27
to 39 amino acid residues, and the artificial 37-mer peptide 6 was discovered to be significantly
more toxic than the other 12 compounds toward P388 mouse leukemia cells (IC50 = 3.7 nM).
Ion exchange activity experiments of 6 using the liposome and P388 cells both demonstrated
that 6 did not possess ion-channel activity, strongly suggesting that 6 exerted its potent cytoxicity
through a distinct mode of action from 1 and 2.
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Polytheonamide B (1, Figure 1) is a giant natural peptide
(MW 5030) and a potent cytotoxic agent (IC50 = 0.098

nM, mouse leukemia P388 cells).1,2 Linearly aligned residues of
1 with alternating D- and L-chiralities consist of 13 non-
proteinogenic and 6 proteinogenic amino acids, and 5,5-
dimethyl-2-oxohexanoate (Ncap) at the N-terminus. The
secondary structure of 1 is reported to be a 45 Å-long β6.3-
helix,3 which is believed to function as a transmembrane ion
channel. In fact, monomeric 1 was shown to selectively
transport monovalent cations (e.g., H+, Na+, K+) across the
membrane,4,5 while the structurally related gramicidin D (3)6,7

must form a head-to-head dimer to act as a similar channel. The
exceedingly high toxicity of 1 has been attributed to its ability to
efficiently form a highly stable ion channel.
We recently reported the total synthesis of polytheonamide

B (1), which involved 161 total steps from commercially
available materials.8−10 Subsequent biological evaluations of the
substructure11 and N-terminal derivatives of 1 provided
valuable information on the structural elements relating to
the function of 1.12 However, the length of the total synthesis
limited the supply of 1 to perform further systematic structure−
activity relationship (SAR) studies.
To overcome this issue, we designed an artificial ion channel

molecule, designated as dansylated polytheonamide mimic 2.13

The structure of 1 was simplified by removing or changing the
β-substituents of residues 2, 22, 29, 37, and 47, and the
dansylated amino acid was placed at residue 44 as a reporter of
the localization of 2. Compound 2 not only required
significantly fewer synthetic steps in comparison to original 1
(127 steps vs 161 steps) but also successfully exhibited potent
cytotoxicity toward P388 mouse leukemia cells (IC50 = 12 nM)
and displayed H+ and Na+ ion channel activities. Therefore, it is

evident that 2 can emulate the functions of 1 despite structural
modifications at six amino acid residues of 1.
In the total synthesis of the 48-residue sequence 2, assembly

of the D,L-alternating 37 amino acid sequence from residues 12
to 48 was realized through a single automatic solid-phase
synthesis. Synthesis of compound 2 was completed via dansyl
group introduction, one fragment-coupling reaction between
residues 11 and 12 and global deprotection. The optimized
solid-phase synthesis technology permitted us to initiate a
program directed toward efficient automated preparation of
various sequences of 2 in the search for biologically active
compounds with minimum molecular complexity. Herein we
report the chemical synthesis of 13 substructures of
polytheonamide mimic 2, which resulted in the discovery of a
compound of 37 amino acid residues with nanomolar level
toxicity (IC50 = 3.7 nM), along with five submicromolar level
cytotoxins, and distinct activities between natural product 1,
mimic 2, and the 37-mer fragment of 2.
The 13 N-terminal peptides 4−16 (H-[X-48]-OH, X = 10−

22) were targeted for comprehensive SAR studies (Table 1).
These sequences were designed to be elongated only by
automatic solid-phase synthesis, in that the compounds do not
possess sterically demanding β-methyl valines (residues 2, 4, 5,
6, 8, 9), which significantly decrease the condensation yields.
The synthesis of all the compounds 4−16 was started from

H-Thr(t-Bu)-2-chloro trityl resin 1714,15 using Fmoc-based
solid-phase peptide synthesis.16 To maximize the overall yield, a
powerful reagent system HATU/HOAt17 was applied for
condensation of the amino acids, and t-Bu, Tr, and Tmb were
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used as the protective groups for the hydroxy, primary amide,
and methyl amide functionalities of the side chains, respectively.
The synthetic route to 6 (H-[12−48]-OH) is illustrated as a
representative example in Scheme 1. After stepwise assembly of

the 36 monomers, the peptide was cleaved from the 2-chloro
trityl resin under mild acidic conditions [(CF3)2CHOH/
CH2Cl2 = 1:3] and purified with HPLC, and then the dansyl
moiety 1818 was incorporated into the alkyne group of residue
44 via 1,3-dipolar addition,19−22 giving rise to 19. Finally,
simultaneous removal of the side chain protective groups (the
eight Tmb,23 four Tr, and three t-Bu groups) from 19 in TFA/
i-Pr3SiH

24/H2O (95:2.5:2.5) successfully delivered 6 (0.07%
overall yield from 17 after HPLC purification). Synthesis of 6
required 98 total steps, comprising 73 steps of the solid-phase
synthesis and 25 steps of the solution-phase synthesis
(monomer syntheses, dansyl introduction, and global depro-
tection), demonstrating the highly automated nature of the
strategy. Most importantly, the developed procedure was
applicable for efficient preparations of longer 4−5 and shorter
7−16 in a unified fashion (0.1−0.3% overall yields, Table 1).
A collection of the analogues 4−16 allowed us to determine

the cytotoxicities of this series toward P388 mouse leukemia
cells (Table 1).25,26 Six out of 13 compounds showed
detectable toxicities, and submicromolar level activities (IC50
= 81−390 nM) were observed for five of them (7, 8, 10, 12,
and 14). Surprisingly, compound 6 (H-[12−48]-OH) was
found to be at least 20-fold more toxic (IC50 = 3.7 nM) than
the other 12 analogues, and its toxicity was even 3 times higher
than that of the longer polytheonamide mimic 2 (Ncap-[1−
48]-OH; IC50 = 12 nM) and comparable to that of gramicidin
D 3 (IC50 = 4.3 nM). It is worthy to note that a drastic increase

Figure 1. Structures of polytheonamide B, dansylated polytheonamide mimic, and gramicidin D.

Table 1. Overall Yields and Cytotoxicity Data of the
Synthesized Peptidesa

compd overall yield from 17 (%) IC50
a (nM)

1: polytheonamide B 0.098
2: Ncap-[1−48]-OH 12
3: gramicidin D 4.3
4: H-[10−48]-OH 0.30 >420
5: H-[11−48]-OH 0.20 >420
6: H-[12−48]-OH 0.07 3.7
7: H-[13−48]-OH 0.10 81
8: H-[14−48]-OH 0.09 100
9: H-[15−48]-OH 0.17 >420
10: H-[16−48]-OH 0.14 140
11: H-[17−48]-OH 0.14 >450
12: H-[18−48]-OH 0.14 190
13: H-[19−48]-OH 0.18 >410
14: H-[20−48]-OH 0.32 390
15: H-[21−48]-OH 0.28 >250
16: H-[22−48]-OH 0.10 >420

aIC50 values were determined from the results of growth inhibition
assays (XTTmethod) performed on P388 mouse leukemia cells.
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in potency was observed when only one amino acid was
detached from 5 (H-[11−48]-OH) or attached to 7 (H-[13−
48]-OH). These results strongly suggested the significance of
the specific structure of 37-mer 6 for the potent cytotoxicity.
A key question was whether this new cytotoxic agent 6

shared the same mechanism of action as the parent natural
product 1, mimic 2 and gramicidin D 3. Since 1−3 are known
to form ion channels in lipid bilayers, the ion transport activity
of 6 was compared to those of 1−3 using liposomes, which are
models of cell membranes (Figure 2). The liposomes were

prepared in HEPES buffer containing 200 mM NaCl with a pH
gradient, a pH of 6.5 inside the liposome, and a pH of 7.5
outside. A fluorescent pH indicator, pyranine, was incorporated
in the liposomes.27,28 Addition of the peptide channels (125
nM) then permitted exchange between protons and Na+ ions
across the lipid bilayer of the vesicles to preserve the ionic
milieu, leading to a fluorescence increase caused by
deprotonation of pyranine. In contrast to the cases of 1, 2,

and 3, which all induced an increase of the fluorescence over
time through the H+/Na+ exchange, addition of peptide 6
resulted in no change. The lack of effect of 6 on the liposome
membranes demonstrated that it had no ion transport activity
or no membrane disruption activity in this assay.29−31

To further investigate that 6 has a different activity from the
ion channel forming natural products 1 and 3, an ion exchange
assay was performed using the P388 cells, toward which 1, 3,
and 6 all exhibited strong toxicities. In this assay, membrane
permeable BCECF-AM 20 (Figure 3) is externally applied to

the P388 cells, and esterase-mediated hydrolysis of the ester
moieties of 20 selectively occurs within the cell membranes to
lead to encapsulation of a hydrophilic pH indicator, BCECF
21.32 Next, the resultant cells are suspended in pH 7.8 MOPS
buffer containing 130 mM NaCl to apply a Na+ gradient, and
treated with the peptides (125 nM) to measure the ion
channel-promoted fluorescent change of 21.33 The addition of
the peptide channels 1 and 3 indeed caused influx of Na+

cations from the external buffer and efflux of protons from the
cells, leading to a pH change over time (Figure 4).34 Higher
efficiency of polytheonamide B 1 in the H+/Na+ exchange in
comparison to gramicidin D 3 correlated to more potent
cytotoxicity of 1 (Table 1) as well as higher activity of 1 in the
liposome experiments (Figure 2). In contrast, addition of
strongly cytotoxic 6 did not affect the intracellular pH of the
P388 cells. This result again indicated that the cytotoxicity of 6
was not induced by ion transport activity. The data in Figures 2
and 4 together corroborated that compound 6 exerted its
cytotoxicity through a different mechanism of action from that

Scheme 1. Representative Synthetic Scheme of the Substructures of 2

Figure 2. Time-course of H+/Na+ exchange across lipid bilayers of pH-
gradient liposomes (EYPC/cholesterol = 2:1) caused by 1, 2, 3, and 6.
The ion transport was evaluated as the pH-dependent fluorescence
from pyranine standardized against the maximum exchange by Triton
X-100. In all the experiments, the peptides were added at 60 s.

Figure 3. Structures of BCECF-AM (20) and BCECF (21).
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of 1−3, although 6 shares 2/3 of its sequence with ion-channel
forming 2.35 Future detailed biological studies remain to be
performed to determine this potential new mode of action of 6.
In conclusion, we developed a unified and highly automated

synthetic procedure for construction of the 13 substructures 4−
16 of ion-channel forming dansylated polytheonamide mimic 2,
and we discovered that D,L-alternating 37-mer peptide 6 was
more toxic than 2 and the other 12 substructures toward P388
mouse leukemia cells. Two types of functional assays of 6
revealed that 6 did not possess ion-channel activity, unlike
polytheonamide B (1), the mimic 2, and gramicidin D (3),
suggesting that 6 exhibited its toxicity through a mode of action
distinct from that of 1−3. The discovery of 6 through structural
permutations of polytheonamide B 1 demonstrates the benefits
of total synthesis endeavors on complex molecule construction,
and offers a unique opportunity for further exploration in
chemical biology studies and drug discovery efforts. Detailed
studies to elucidate its mode of action are currently underway
in our laboratory.
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